Neighborhood Density in Naturalistic Word Learning

Holly L. Storkel, Ph.D.
University of Kansas
Word Learning

- Children rapidly acquire new words
- Able to associate word form with the referent after 1 exposure
 - Fast mapping
- Initial representations retained and elaborated
Influence of Existing Representations

- New words learned in the context of known words
- Representations of new words must be integrated with existing representations
- Structure of memory may influence acquisition
Structure of the Lexicon

• Semantic
 – Representation of meaning
 – chair – “furniture for sitting”

• Lexical
 – Representation of whole word form
 – chair -- /ʃeɪr/
Structure

- Representations are not isolated
- Connections among related representations
- Similarity relationships may influence acquisition
Semantic Similarity

- Semantic set size
- Number of different words generated by two or more people in response to a given word
 - sit – stand, chair, down, relax, rest
- Large vs. small set size
Effect of Semantic Set Size

- **Cued recall**
 - Study a list of words
 - Recall words with the support of a cue

- **Small set size advantage**
 - Words with few associates are recalled better
Lexical Similarity

• Neighborhood density

• One phoneme substitution, deletion, addition

• Sit – pit, set, sick, it, spit

• High vs. low density
Density Effect

• Word recognition studies
 – Judge word pair as “same” or “different”
 – Lexical decision
 – Repeat the word

• Low density advantage
 – Words with few neighbors recognized faster
Does semantic and/or lexical structure influence naturalistic word learning?

- Similarity could be harmful
- Similarity could be helpful
Word Learning Database

- Mac Arthur Communicative Development Inventory Norms (Dale & Fenson, 1996)

- Infant (8-16 months)
 - 396 words
 - Comprehension
 - Production

- Toddler (16-30 months)
 - 680 words
 - Production
Variables

- **Age-of-Acquisition**
 - Earliest age when $\geq 50\%$ of children “know” word

- **Semantic set size** (Nelson, McEvoy, & Schreiber)

- **Neighborhood density**

- **Word Frequency** (Moe, Hopkins, & Rush)

- **Word length**
Results

- Linear regression
- Infant production
 - Not enough data (n=13)
- Infant comprehension
 - Semantic set size significant
Large Set Size Acquired Early

The diagram shows a scatterplot with infant comprehension on the x-axis and semantic set size on the y-axis. The data points indicate a trend where set size decreases as comprehension increases.
Results (cont)

• Toddler production
 – Semantic set size significant
 – Neighborhood density significant
Large Set Size Acquired Early
High Density Acquired Early

![Graph showing the relationship between Toddler Production and Neighborhood Density. The graph displays a downward trend as Toddler Production increases.]
Summary

• Similarity to known words influences acquisition
 – High similarity facilitates acquisition
 – Connections to many known words

• Different representations influential in development
 – Semantic influences early
 – Lexical influences later
Acknowledgements

• Funding
 – NIDCD 04781

• Contributors
 – Maki Sueto
 – Mariam Syeda
 – Michael S. Vitevitch
Contact Information

Holly L. Storkel
University of Kansas
Speech-Language-Hearing
1000 Sunnyside Ave.
3001 Dole Center
Lawrence, KS 66045

hstorkel@ku.edu