Effects of Neighborhood Density and Phonotactic Probability on Word Learning

Holly L. Storkel
Jonna Armbruster & Tiffany Hogan
University of Kansas

NIDCD 04781, 06545, 00052, 06749
Form Representation

- **Sublexical representations**
 - Individual sounds
 - e.g., /b/, /i/, /d/

- **Lexical representations**
 - Whole word form
 - e.g., /bid/
Sublexical Representations

- Influenced by phonotactic probability
 - Frequency of occurrence of individual sounds
 (i.e., positional segment frequency)
 - Frequency of co-occurrence of pairs of sounds
 (i.e., biphone frequency)
- High probability advantage in recognition and production
Lexical Representations

- Influenced by neighborhood density
 - Number of similar sounding words
 - High density disadvantage in recognition
 - High density advantage in production and serial recall
Word Learning in Children

- Examined correlated phonotactic probability and neighborhood density
- High probability/high density advantage
- Attributable to sublexical or lexical influences on word learning?
Do both sublexical and lexical representations influence word learning?
Study 1: Adult Word Learning

- 32 monolingual English-speaking adults
- 16 nonwords varying in phonotactic probability and neighborhood density
- Paired with unusual objects
- Repeated exposure-test paradigm
Results

- Main effect of phonotactic probability
 - High probability disadvantage

- Main effect of neighborhood density
 - High density advantage

- No significant interactions
Study 2: Toddler Word Learning

- Database of words known by 16- to 30-month-olds
- 680 word checklist
- Parent indicates which words child produces
- Norms from 1,800 children
Stimuli

- **Restrict to nouns**

- **Sublexical measures:**
 - Positional segment frequency
 - Biphone frequency

- **Lexical measures:**
 - Neighborhood density
 - Word length
 - Word frequency
 - Neighborhood frequency
Stimuli

- Semantic measures

- Nelson, McEvoy, & Schreiber (1998) discrete association norms
 - Semantic set size: number of neighbors
 - Connectivity: number of connections among neighbors
 - Probability resonance: number of bidirectional connections
 - Resonance strength: strength of the bidirectional connections
Factor Analysis

- **Four factors:**
 - Sublexical: positional segment & biphone frequency
 - Lexical: neighborhood density & word length
 - Semantic 1: set size & connectivity
 - Semantic 2: probability resonance & resonance strength
Regression Results

- All factors significant predictors
 - Sublexical: High probability disadvantage
 - Lexical: High density/short word advantage
 - Semantic 1: High set size/connectivity advantage
 - Semantic 2: High resonance/strength advantage
Regression Results

- **Interactions**
 - Sublexical x Age: No interaction
 - Lexical x Age: Lexical effect decreases as age increases
 - Semantic 1 x Age: Semantic effect increases as age increases
 - Semantic 2 x Age: Semantic effect increases as age increases
Sublexical Effects on Word Learning

- High probability disadvantage constant across age
- Sublexical representations may aid in triggering word learning
- Low probability = unique
Lexical Effects on Word Learning

- High density advantage that diminishes across age
- Existing lexical representations may stabilize new representations
- Change in emphasis on form vs. meaning with development?
- Influence of amount of similarity?
Semantic Effects in Word Learning

- High set size advantage that increases across age
- Existing semantic representations may stabilize new representations
- Change in emphasis on form vs. meaning with development?
- Influence of amount of similarity?
Word Learning Conclusions

- Role of sublexical representations is unique

- Influence of lexical and semantic representations is similar

- Developmental changes in lexical and semantic influences warrant further investigation
Acknowledgements

- NIDCD 04781, 06545, 00052, 06749
- Contributors: Wade Burtchet, Jill Hoover, Kristen Linnemeyer, Andrea Perdue, David Slegers, Maki Sueto, Michael Vitevitch, Junko Young
- Contact information: Holly L. Storkel
 hstorkel@ku.edu
 www.ku.edu/~wrdlrng