What is word learning?

What do you have to learn to "know" a word?

Phonological Representation

koʊ f

k oʊ f
Phonological representation = Known

Lexical representation = New

Hypothesis 1:
Phonological characteristics may influence word learning

Hypothesis 2:
Characteristics of known lexical representations may influence word learning
Overview
- Focus on phonological and lexical characteristics (i.e., form)
- Study 1: Adult
- Study 2A: Preschool Children
- Study 2B: Preschool Children

Phonological Characteristic
- Phonotactic probability
 - Frequency of occurrence of individual sounds (i.e., positional segment frequency)
 - Frequency of co-occurrence of pairs of sounds (i.e., biphone frequency)
 - High probability advantage in recognition and production

Lexical Characteristic
- Lexical neighborhood density
 - Number of similar sounding words
 - High density disadvantage in recognition
 - High density advantage in production and serial recall

Caveats
- Past word learning studies = children
 - What happens in the mature word learner?
- Phonotactic probability correlated with lexical density
 - High probability ~ high density
 - Low probability ~ low density
- Past word learning studies have not differentiated these two characteristics
Study 1: Storkel, Armbruster, & Hogan

Adult Word Learning

Method
- 32 monolingual English-speaking adults
- 16 nonwords varying in phonotactic probability and lexical density
 - High probability/high density
 - Low probability/high density
 - High probability/low density
 - Low probability/low density

Procedure

<table>
<thead>
<tr>
<th>Test 0</th>
<th>Story 1</th>
<th>Test 1</th>
<th>Story 1</th>
<th>Test 2</th>
<th>Story 1</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Episode 1</td>
<td></td>
<td>Episode 2</td>
<td></td>
<td>Episode 3</td>
<td></td>
</tr>
<tr>
<td>1 exposure</td>
<td>3 exposures</td>
<td>1 exposure</td>
<td>3 exposures</td>
<td>1 exposure</td>
<td>3 exposures</td>
<td></td>
</tr>
<tr>
<td>8 stimuli</td>
<td>8 stimuli</td>
<td>8 stimuli</td>
<td>8 stimuli</td>
<td>8 stimuli</td>
<td>8 stimuli</td>
<td></td>
</tr>
</tbody>
</table>

Picture Naming: score 2 or 3 phonemes correct

Results
- Main effect of phonotactic probability
- Main effect of lexical density
- No significant interactions

Effect of Phonotactic Probability

<table>
<thead>
<tr>
<th>Density</th>
<th>Phonotactic Probability</th>
<th>Referent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>naut</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>mug</td>
</tr>
</tbody>
</table>

High probability

Low probability

High density

Low density
Effect of Lexical Density

![Graph showing effect of lexical density on proportion correct.](image)

Study 2A & 2B: Storkel, Hogan, & Giles

Child Word Learning

Preliminary Findings

Quality of Representation

- Partial: 2 of 3 phonemes correct
 - Significant low probability advantage
- Complete: 3 of 3 phonemes correct
 - Significant high density advantage

Method

- Participants:
 - Study 2A: 31 preschool children
 - Study 2B: 32 preschool children
- Preliminary evidence using Study 1 methods suggested interactions
 - Study 2A: Density constant -- Probability varies
 - Study 2B: Probability constant -- Density varies
- Increased exposures
 - 1, 4, 7 (adult) vs. 8, 16, 24 (kids)
 - Added a 1-week post-test

Study 1: Summary

- Independent effects of phonotactic probability and lexical density
 - Low probability advantage, especially for partial representations
 - High density advantage, especially for complete representations

Preliminary Results: Study 2A

- Three-way interaction significant
 - Phonotactic probability x density x exposure
- Effect of phonotactic probability for:
 - Low density: Significant effect of probability
 - High density: ~Significant effect of probability
Low Density: Effect of Probability

<table>
<thead>
<tr>
<th>Probability</th>
<th>Low density</th>
<th>High density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proportion Correct vs. Cumulative Exposure

Low probability advantage

Size of the advantage varies by lexical density & exposure

High density – early low probability advantage

Low density – late low probability advantage

Preliminary Results: Study 2B

Three-way interaction significant
Phonotactic probability x density x exposure

Effect of lexical density for:

- Low probability: Density x exposure interaction?
- High probability: Density x exposure interaction?
Study 2B Summary
- Small effect of density at post-test
- Direction of the effect varies by probability
 - Low probability – ~low density advantage at post
 - High probability – ~high density advantage at post

Lexical Effects on Word Learning
- Lexical characteristics influence word learning
 - High density advantage (but see following developmental issues)
 - Existing lexical representations may stabilize new lexical representations, leading to complete representations

Comparison x Studies
- Phonotactic probability
 - Adults: consistent low probability advantage, especially for partial representations
 - Children: variable low probability advantage
- Lexical density
 - Adults: consistent high density advantage, especially for complete representations
 - Children: variable (high & low) advantage at post

Developmental Changes
- Phonological effect similar across age
 - Same direction (low probability advantage)
 - Similar effect sizes ($\eta_p^2 = 0.16$ adults, 0.17 kids)
- Lexical effect appears to change across age
 - Different direction (high vs. variable density advantage)
 - Different effect sizes ($\eta_p^2 = 0.27$ adults, 0.04 kids)

Phonological Effects on Word Learning
- Phonological characteristics do affect word learning
- Low probability advantage for adults and children
- Phonological representations may aid in triggering word learning and forming partial representations
- Low probability = unique

Developmental Hypotheses
- Change in representations involved in word learning
 - Children: phonological
 - Adults: phonological and lexical
- Not a developmental difference but a difference in the word learning stage sampled
 - Children: forming initial representations (phonological)
 - Adults: forming initial representations and consolidating these representations (phonological & lexical)
- Need to vary age but match overall accuracy to differentiate
Thank You!

- NIDCD 04781, 00052, 06749, 05803

- Contributors: Teresa Brown, Wade Burtchet, Jennie Fox, Stephanie Gonzales, Jill Hoover, Kristen Linnemeyer, Junko Maekawa, Mariza Rosales, Maki Sueto, Alli Wade, Courtney Winn

- Contact information: Holly L. Storkel
 hstorkel@ku.edu
 www.ku.edu/~wrdlrng