Word Learning by Adult Speakers of English: Does Practice Make Perfect?

Holly L. Storkel
University of Kansas

Natalie Pak

Junko Maekawa

Background

• Practice Effect: When children are taught two sets of words sequentially, they learn the second set of words better than the first set of words (Gershkoff-Stowe & Hahn, 2007).

• The practice effect is thought to occur because the first set of words primes the child’s word learning system, facilitating learning of the second set of words.

• It is unclear whether the practice effect is observed in more advanced word learners (i.e., adults).

• It is unclear whether the practice effect is influenced by word characteristics.

• Neighborhood Density: The number of words that are phonologically similar to a given word.

• Neighborhood density influences word learning by children and adults such that high density words are learned more rapidly than low density words (Hoover, Storkel, & Hogan, 2012; Storkel, Armbruster, & Hogan, 2006; Storkel & Lee, 2011).

Method: Stimuli

• Each participant was taught one set of words across two days and then a second set of words on a third day.

• Each set consisted of 12 words.

• Set 1 and Set 2 words were phonologically related.

• Each word in Set 2 was a neighbor of a word in Set 1, either

• VC (C in 4 words):

• CVC (in 4 words):

• CV (in 4 words):

• Between participants, words were either sparse or dense.

• Novel objects were taken from Kroto and Fatter (1984) with the same objects being used across sparse and dense words.

• Analysis:

• Examine all data points for Set 1 to replicate prior findings that dense words are learned better more rapidly than sparse words.

• Compare equivalent test points (e.g., tests tested in red above for Set 1 versus Set 2) to address the main research questions.

Sample Stimulus

<table>
<thead>
<tr>
<th>Sparse</th>
<th>Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CVC</td>
<td>(Set 1)</td>
</tr>
<tr>
<td>• CVC</td>
<td>(Set 2)</td>
</tr>
</tbody>
</table>

Method: Procedures

• Training 1: Blockaded exposures to the word and object in standard carrier phrases (e.g., This is a ___).

• Training 2: Picture-name training (i.e., see picture, say trained name).

• Correct > 1 of 2 phonemes

• Incorrect = all other productions.

• Training 3: Screening for training and testing were administered.

• Day 1: Set 1: Test 1 (baseline): Training 1, Training 2, Training 3, Test 1.

• Day 1: Set 1: Test 2 (posttest): Training 1, Training 2, Training 3, Test 1.

• Day 1: Set 1: Test 3 (posttest): Training 1, Training 2, Training 3.

<table>
<thead>
<tr>
<th>Characteristics of the Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse: Set 1</td>
</tr>
<tr>
<td>Phonotactic Probability Segment Sum</td>
</tr>
<tr>
<td>Biphone Probability Segment Sum</td>
</tr>
<tr>
<td>Neighborhood Density</td>
</tr>
</tbody>
</table>

Sparse: Set 2	Dense: Set 2		
Phonotactic Probability Segment Sum	0.11	0.11	0.01
Biphone Probability Segment Sum	0.011	0.011	0.011
Neighborhood Density	2	2	2

Results: Set 1

• 4 Test (both) > 2 Density (between ANOVA)

• Significant effect of Test, F (1, 413) = 112.50, p < 0.001, η² = 0.22.

• Significant effect of Density, F (1, 59) = 22.40, p < 0.001, η² = 0.28.

• No interaction, F (1, 413) = 0.12, p > 0.15, η² = 0.003.

Results: Set 1 vs. Set 2

• 4 Test (both) > 2 Density (between ANOVA)

• Significant effect of Test, F (1, 413) = 118.37, p < 0.001, η² = 0.21.

• Significant effect of Density, F (1, 59) = 10.31, p < 0.002, η² = 0.16.

• Significant interactions of

• Test x Density, F (1, 413) = 1.83, p < 0.02, η² = 0.001.

• Test x Set, F (1, 413) = 10.35, p < 0.001, η² = 0.03.

Unpacking Interactions with Test

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense</td>
<td>Sparse</td>
<td>Dense</td>
<td>Sparse</td>
</tr>
<tr>
<td>Effect of Density</td>
<td>No Significant Effect</td>
<td>No Significant Effect</td>
<td>No Significant Effect</td>
</tr>
<tr>
<td>Effect of Set</td>
<td>No Significant Effect</td>
<td>No Significant Effect</td>
<td>No Significant Effect</td>
</tr>
</tbody>
</table>

Summary & Discussion

• Set 1 analysis, dense words were learned more rapidly accurately than sparse. Set 1 and 3 analyses generally show this same pattern.

• Replicates density effect observed in prior studies, which used a within-participant manipulation (Storkel, et al., 2006).

• Set 2 was more accurate than Set 1 at Test 1.

• Results support the practice effect observed in prior studies of children (Gershkoff-Stowe & Hahn, 2007).

• Extends these findings by suggesting that the practice effect does occur in adults but short lived.

• Set 1 was more accurate than Set 2 at Test 4.

• Suggests that the initial practice effect to recognize retention is tested.

• More recently learned Set 2 may be subject to competition interference from the earlier learned Set 1.

• Overall pattern of the effect of set is consistent with recent models of word learning that separate learning from input versus memory consolidation for retention (Ellis & Gaskell, 2009; Storkel & Gaskell, 2007; Gaskell & Durrant, 2002).

• Set 1 facilitates learning from input for Set 2.

• Set 1 interferes with memory consolidation for retention.

• Density did not appear to amplify or dampen the effect of set.

References

Acknowledgements

The project described was supported by grant DC00595 from NIH. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The authors would like to thank (1) the staff of the Word Learning Lab for their contributions to stimulus creation, data collection, data processing, and reliability calculations; (2) the adults who participated in the study.