Working Memory in Preschool Children with and without Phonological Delays

Assessment of Word Learning

Nonword Repetition vs. Standardized Tests

- Less culturally biased (e.g., Rodekohr & Haynes, 2001)
- Sensitive to individual differences (e.g., Gray, Plante, Vance, & Henrichsen, 1999)
- Process versus product based (Dollaghan & Campbell, 1998)

Form Characteristics

- Phonotactic Probability
- Likelihood of occurrence of a sound sequence (Common vs. Rare)
- Neighborhood Density
- The number of similar sounding words (Dense vs. Sparse)

Effects of Phonotactic Probability and Neighborhood Density

• Word Learning (Storkel, 2004)

- Children with phonological delays learned a similar number of words, however...
- Common-Dense >Rare-Sparse (TD children)
- Rare-Sparse >Common-Dense (PD Children)

Nonword Repetition

- Manipulating form characteristics in NWRT affects performance but does not differentiate groups
- Common > Rare (TD & PD) (e.g., Gathercole, Frankish, Pickering, & Peaker, 1999; Munson, Edwards, & Beckman, 2005)
- Mismatch between word learning and nonword repetition results

Questions

- Do form characteristics have the same effect on performance across two different working memory tasks?
- Is the effect the same for children with and without phonological delays?

Two Tasks

- Nonword Repetition (NWRT)
- Repetition of lists of nonwords varying in the number of nonwords to be recalled
- Nonword Language Processing Task (NLPT)
- Maintenance of a nonword in memory while processing the meaning of a sentence

Participants

	Age	GFTA Raw Score	ROWPVT Raw Score	EOWPVT Raw Score
⁺ TD	59	5	63	57
(N = 20)	(41-76)	(0-14)	(51-78)	(38-81)
^{+*} PD	63	32	65	59
(N = 13)	(48-79)	(18-51)	(48-74)	(43-71)

hildren in the PD group scored WNL on an omnibus language test, oral motor test, and nonverbal IO test.

Stimuli

Common – Dense	Common- Sparse	Rare- Dense	Rare- Sparse
wæt	heb	həit	hoip
hab	jıb	maud	haup
moub	nep	naut	mub
nab	jem	wлd	nəit
wat	jım	wup	wib
wep	mib	wim	waut
jæd	wam	jeıd	jeb
jæp	wæb	jid	jim
jout	jīd	jip	joud
jain	haun	jit	joup

NWRT Procedures

- Brief training
- Four list lengths (1,2,3,4)
- 16 trials per list length
- List length 3

jeb haup waut

Dependent variable

Proportion of phonemes correct

NLPT Procedures

- Extensive 3-step training
- Yes/no judgment
- Nonword recall
- Multiple nonword recall
- Four list lengths (1,2,3,4)
- 16 trials per list length
- Discontinuation rule

Jill R. Hoover¹, M.A. & Holly L. Storkel², Ph.D.

¹Child Language Doctoral Program

University of Kansas

jeb haup waut

NLPT Procedures (List length 3)

Mickey Mouse is eating the $j\epsilon b$

Was that right? No

Clifford is kicking the haup

Was that right? No

The girl is catching the waut

Was that right? Yes

Nonword Recall Prompt

jeb haup waut

Dependent variable

Proportion of phonemes correct in nonword recall

² Department of Speech-Language-Hearing

NWRT

(Proportion of phonemes correct)

- 2 (density) x 2 (phonotactic probability) x 4 (length) ANOVA
- Significant effect of phonotactic probability
- -F(1, 31) = 17.623, p = .000
- Rare > Common

Significant effect of neighborhood density

- -F(1, 31) = 6.327, p = .017
- Dense > Sparse
- No interaction with group

NWRT Phonotactic Probability 2 0.5 + 🛛 🗖 Common **0.4 6** 0.3

NWRT Neighborhood Density

NLPT

(Proportion of phonemes correct)

- 2 (density) x 2 (phonotactic probability) x 4 (length) ANOVA
- Significant Interaction between group and density
- -F(1, 31) = 5.156, p = .030
- Significant effect of density for PD group only
- -F(1, 12) = 7.937, p = .016

– Sparse > Dense

NLPT **Density * Group**

• NWRT

- Rare > Common and Dense > Sparse for TD & PD
- Inconsistent with previous effect of phonotactic probability (Gathercole et al. 1999, Thorn & Frankish, 2005)
- Partial- versus whole-word scoring method
- Younger versus older children & adults
- Consistent with previous effect of neighborhood density (Thorn & Frankish, 2005).
- Consistent with previous lack of group differentiation (Munson et al. 2005)
- NWRT may not be sensitive enough to detect subtle differences in children with PD
- NLPT
- Sparse > Dense in PD only
- Consistent with sparse advantage in novel word learning (Storkel, 2004)
- Children with PD require additional cues in a more demanding working memory task
- Different tasks differentially tap phonological versus lexical representations (Vitevitch, 2003)
- NWRT
- Taps both phonological & lexical representations
- NLPT
- Taps lexical representations only (PD only)
- May be more sensitive than NWRT in predicting word learning performance

Summary

Ongoing Data Collection

- Compare performance to a phonology-equivalent group
- Examine differences in experimental and naturalistic word learning tasks
- NWRT, NLPT, & standardized vocabulary tests as predictors of novel word learning

References

- Dollaghan, C., & Campbell, T.F. (1998). Nonword repetition and child language impairment. Journal of Speech, Language, and Hearing Research, 41, 1136-
- Gathercole, S.E., Frankish, C.R., Pickering, S.J., & Peaker, S. (1999). Phonotactic influences on short-term recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 84-95.
- Gray, S., Plante, E., Vance, R., & Henrichsen, M. (1999). The diagnostic accuracy of four vocabulary tests administered to preschool-age children. Language, Speech, and Hearing Services in Schools, 30, 196-206.
- Kroll, J.F., & Potter, M.C. (1984). Recognizing words, pictures, and concepts: A comparison of lexical, object, and reality decisions. *Journal of Verbal Learning* and Verbal Behavior, 23, 39-66.
- Munson, B., Edwards, J., & Beckman, M. E. (2005). Relationships between nonword repetition accuracy and other measures of linguistic development in children with phonological disorders. Journal of Speech, Language, and *Hearing Research, 48, 61-78.*
- Rodekohr, R.K., & Haynes, W.O. (2001). Differentiating dialect from disorder: A comparison of two processing tasks and a standardized language test. Journal of Communication Disorders, 34, 255-272.
- Snodgrass, J.G. & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and *Метогу, 6,* 174-215.
- Storkel, H.L (2001). Learning new words: Phonotactic probability in language development. Journal of Speech, Language, and Hearing Research, 44, 1321-
- Storkel, H.L. (2004). The emerging lexicon of children with phonological delays: Phonotactic constraints and probability in acquisition. *Journal of Speech*, Language, and Hearing Research, 47, 1194-1212.
- Thorn, A.S.C. & Frankish, C.R. (2005). Long-term knowledge effects of nonwords are not exclusively lexical. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 729-735.
- Vitevitch, M.S. (2003). The influence of sublexical and lexical representations on the processing of spoken words in English. Clinical Linguistics & Phonetics, 17, 487-499.

Acknowledgements

SRCLD Student Travel Award

Support: NIH DC000052, DC006545, DC05803, HD02528

Project Contributors: Word & Sound Learning Lab **Mike Vitevitch**

Contact: www.ku.edu/~wrdlrng/ jrhoover@ku.edu hstorkel@ku.edu